Spinning Reserve from Supervisory Thermostat Control

by
Brendan Kirby
Moonis Ally
Oak Ridge National Laboratory

for
Transmission Reliability Research Review
Washington, D.C.
December 09, 2002

Goals

- Current NERC rules dictate spinning reserves to come from generation that is unburdened, able to respond immediately, and become fully responsive in 10 minutes
- The project consists of using responsive loads to provide spinning reserves to address electric reliability issues
- Quantify residential and commercial cooling loads that can contribute to spinning reserves
- Economics of providing Spinning Reserve from responsive loads

Opportunity

- The project would provide flexibility, alternatives to free up generation used to supply spinning reserves
- NERC and utilities are interested in responsive loads to supply spinning reserves
- Benefits include increased energy management capability
- Most of the hardware/software already exists. It is a matter of determining the next few steps in bringing idea of responsive loads to provide spinning reserves to fruition

Outline

- Quantify Hourly, Daily, and Seasonal Packaged Terminal Air conditioner (PTAC) Load Contribution to Spinning Reserves
- Spinning Reserve Technical Requirements
- Size of Spinning Reserve Resource from Thermostat Controls
- Correlation between hourly PTAC load and hourly utility system load (TVA, CA ISO, NE ISO Data)
- Utility Pricing Data (spinning and ancillary load)
- NERC requirements
 - Information from Field Data to serve NERC Control Area request for waiver
- Phase II

- LIPA/Carrier Data on 17,000 homes
- SCE/Carrier Data from 3,000 homes
- PTAC technical issues

Spinning Reserve Requirements

- Critical technical requirement is to rapidly restore generation/load balance after a serious contingency (loss of major generator or transmission line)
- This restoration can be addressed from either the generation or load side

Spinning Reserves Responds Immediately Following Contingency (ERCOT Data)

Spinning Reserve is Quickly Relieved by Supplemental and Backup

Digi-Log, Inc./ORNL PTAC Supervisory Control Hardware

New controller designed by Digi-Log, Inc.

Schematic of Digi-Log, Inc./ORNL signal initiation, reception and data collection

LIPA/SCE/Carrier/Hardware for Residential Thermostats Control

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

PTAC Averaged Hourly Summer 2001 Load (controlled rooms)

PTAC Averaged Hourly Summer 2001 Load (uncontrolled rooms)

TVA Average Hourly System 2001 Summer Load Consistent with PTAC Loads

TVA Hourly Averaged System Marginal Energy Cost (Summer 2001)

CAISO Average Hourly Spinning Reserve Prices for February and July 2002

Resource Size - Commercial (PTAC) Market

Туре	%	Quads
Packaged A/C	54	0.756
Room A/C	5	0.07
Rotary Screw Chillers	3	0.042
Reciprocating Chillers	12	0.168
Absorption	2	0.028
Centrifugal Chillers	14	0.196
Heat Pump	7	0.098
PTAC	3	0.042
Total	100	1.4

 $1 \text{ Quad} = 10^{15} \text{ BTU} = 2.93 \text{ x } 10^{-11} \text{ Kw-h}$

Source: Energy consumption Characteristics of Commercial Building HVAC, Vol. 1, April 2001. Prepared by A.D. Little, Inc. for U.S. DOE

PTAC Economics

Typical PTAC Data	1.48 kw	12 hours/day, compr. rupping time	7 cooling mont
1480 watts cooling 3360 watts heating	1.48 kw 3.36 kw	12 hours/day compr. running time 8 hours/day heater running time	7 cooling mont5 heating mont
ooo watto floating	J.JU 11.VV	o nodiorady moder running time	J Heating Hilli
0.059 \$ per KWH	163 units	Occupancy: 89 %	
Cooling			
Per Unit	#4.05		
17.76 kwh/day	\$1.05 per day		
480.5146 kwh/month	\$28.35 per month		
3363.602 kwh/year	\$198.45 per year		
Savings, Cooling Mode:	28 %		
Savings Per			
4.884 kwh/day	\$0.29 per day		
132.1415 kwh/month	\$7.80 per month		
924.9905 kwh/year	\$54.57 per year		
Heating			
Per Unit			
26.88 kwh/day	\$1.59 per day	Installed Cost of Digi-log of	ontroller = \$2
727.2653 kwh/month	\$42.91 per month	Energy Savings = \$114	
3636.326 kwh/year	\$214.54 per year		
·			
3636.326 kwh/year Savings, Heating Mode:	\$214.54 per year 28 %		
·	28 %	Simple payback = 2.62 made units	yrs for custor
Savings, Heating Mode :	28 %	Simple payback = 2.62 made units Assembly-line units to cos	yrs for custor at least an
Savings, Heating Mode :	28 % Unit	Simple payback = 2.62 made units Assembly-line units to cosorder of magnitude less	yrs for custor at least an ~\$30
Savings, Heating Mode : Savings Per 1 7.392 kwh/day	28 % Unit \$0.44 per day	Simple payback = 2.62 made units Assembly-line units to cos	yrs for custor at least an ~\$30
Savings, Heating Mode : Savings Per 7.392 kwh/day 199.998 kwh/month 999.9898 kwh/year Total Annual	28 % Unit \$0.44 per day \$11.80 per month	Simple payback = 2.62 made units Assembly-line units to cosorder of magnitude less	yrs for custor at least an ~\$30
Savings, Heating Mode : Savings Per 7.392 kwh/day 199.998 kwh/month 999.9898 kwh/year Total Annual Per Unit	28 % Unit \$0.44 per day \$11.80 per month \$59.00 per year	Simple payback = 2.62 made units Assembly-line units to cosorder of magnitude less	yrs for custor at least an ~\$30
Savings, Heating Mode : Savings Per 7.392 kwh/day 199.998 kwh/month 999.9898 kwh/year Total Annual	28 % Unit \$0.44 per day \$11.80 per month	Simple payback = 2.62 made units Assembly-line units to cosorder of magnitude less	yrs for custor st at least an ~\$30

PTAC Economics (cont'd)

- Gas Turbine generation cost is ~ \$500/kW
- Cost of pager technology to extract spinning reserve from PTAC ~ \$50
- Each PTAC contributes 1.1 kW
- \$46/kW for spinning reserve from responsive load is *highly* attractive to utilities relative to generation using Gas Turbines
- Economical to end-user and utilities

Resource Size- Residential Market

Source: 2000 BTS Core Databook, Office of Energy Efficiency and Renewables, U.S. DOE, August 7, 2002

Resource Size - Summary

Residential 37,000 MW

Commercial (PTACs only) 3,000 MW

NERC Requirements

- Spinning reserves must come from generation that is on-line, not fully loaded, frequency responsive, able to respond immediately, and become fully responsive in 10 minutes
- Current NERC rules do <u>not</u> allow loads to supply spinning reserves

Spinning Reserves: future direction

- NERC is open to alternative choices for providing spinning reserves
- Ongoing work at NERC Policy 10 and Policy 1 committees recognize utility interest in responsive load providing spinning reserves
- Opportune time for DOE, utilities to study potential for load to provide spinning reserves

Summary: Phase I

Commercial sector

- quantified spinning reserve/PTAC (1.1kW)
- at least 3,000 MW from PTACs that can contribute to spinning reserves
- quantified hourly and seasonal contribution of load toward spinning reserve
- matched hourly, seasonal PTAC load in actual field demonstration with hourly, seasonal load utility loads (TVA, CAISO)
- conducted economic analysis of spinning reserves and energy benefits: favorable ROI

Summary: Phase II

Residential Sector

- Our discussions with LIPA, Southern
 California Edison, Carrier Corp., Consolidated
 Edison, indicate strong interest in technical
 viability of generating spinning reserves from
 loads in residential buildings
- Residential buildings sector comprises 105 million units with yearly averaged cooling loads estimated at 36,000 MW, more than 10 times the commercial PTAC load

Summary: Phase II (cont'd)

Residential Sector

- Loads controlled with Carrier Comfort Choice represent a large resource that is highly correlated with power system load
- Large pool of installed equipment readily available
- LIPA data on 17,000 homes has been received
- SCE data on 3,000 homes is being negotiated prior to release
- Existing load curtailment and monitoring technology has been customized for ISO and utilities

Summary: Phase II (cont'd)

- Quantify residential cooling and heating loads that can contribute to spinning reserve in LIPA, SCE territory
- Identify aggregation, communication, control, and monitoring issues
- Response time of ISO issued signals and successful acknowledgement and execution
- Technical feasibility of PTAC units and comparison with performance of commercial residential thermostat controllers

DOE Budget/Cost - Sharing

	• <u>FY '03</u>	
\$80K	DOE (recd.)	\$50K
\$90K	DOE (pending)	\$70K
\$15K	Carrier Corp./LIPA	
	(equip.)	\$5,400K
43.2%	Carrier Corp./LIPA	
	(Software/Ops., etc.)	\$5,200K
NYSERDA (LIPA)
		\$15K
	\$90K \$15K	\$90K DOE (pending) \$15K Carrier Corp./LIPA (equip.)

DOE share of cost = 1.12%

Active participants

- Alex Nyilas, LIPA
- Dan Zaweski, LIPA
- Joe Lobes, Applied Energy Group, N.Y
- Michael Marks, Applied Energy Group, N.Y
- Peter Douglas, NYSERDA
- Ken Winters, Digi-log, Inc, TN
- Al Carpentier, Digi-Log rep. In NY
- Mike Hervey, LIPA Systems Operation
- Seth Hulkower, LIPA Systems Operations
- David Lawrence, NYISO
- Richard Kessel, Chairman, LIPA
- Mark Martinez, SCE Manager, Load Control Programs
- Lauren Kolb, dir. Product strategy and Marketing, Carrier, Corp.
- Ray Archacki, Jr., System Architect, ComfortChoice, Carrier Corp.
- Margret Spurlin, ORNL/UT-Battelle Tech. Transfer Office

